Finite Mathematik Beispiele

Finde die Nullstellen mithilfe des Lemmas von Gauß 2x^10-6x^9+10x^9-126x^8
Schritt 1
Addiere und .
Schritt 2
Wenn eine Polynomfunktion ganzzahlige Koeffizienten hat, dann hat jede rationale Nullstelle die Form , wobei ein Teiler der Konstanten und ein Teiler des Leitkoeffizienten ist.
Schritt 3
Ermittle jede Kombination von . Dies sind die möglichen Wurzeln der Polynomfunktion.
Schritt 4
Setze die möglichen Wurzeln eine nach der anderen in das Polynom ein, um die tatsächlichen Wurzeln zu ermitteln. Vereinfache, um zu prüfen, ob der Wert gleich ist, was bedeutet, dass er eine Wurzel ist.
Schritt 5
Vereinfache den Ausdruck. In diesem Fall ist der Ausdruck gleich , folglich ist eine Wurzel des Polynoms.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 5.1.2
Mutltipliziere mit .
Schritt 5.1.3
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 5.1.4
Mutltipliziere mit .
Schritt 5.1.5
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 5.1.6
Mutltipliziere mit .
Schritt 5.2
Vereinfache durch Addieren von Zahlen.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Addiere und .
Schritt 5.2.2
Addiere und .
Schritt 6
Da eine bekannte Wurzel ist, teile das Polynom durch , um das Quotientenpolynom zu ermitteln. Dieses Polynom kann dann benutzt werden, um die verbleibenden Wurzeln zu finden.
Schritt 7
Als Nächstes bestimme die Wurzeln des verbleibenden Polynoms. Der Grad des Polynoms ist um reduziert worden.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Ordne die Zahlen, die den Divisor und den Dividenden darstellen, ähnlich wie in einer Division an.
  
Schritt 7.2
Die erste Zahl im Dividenden wird an die erste Position des Ergebnisbereichs gestellt (unterhalb der horizontalen Linie).
  
Schritt 7.3
Multipliziere den neuesten Eintrag im Ergebnis mit dem Divisor und schreibe das Ergebnis von unter den nächsten Term im Dividenden .
  
Schritt 7.4
Addiere das Ergebnis der Multiplikation und die Zahl aus dem Dividenden und notiere das Ergebnis in der nächsten Position der Ergebniszeile.
  
Schritt 7.5
Multipliziere den neuesten Eintrag im Ergebnis mit dem Divisor und schreibe das Ergebnis von unter den nächsten Term im Dividenden .
  
Schritt 7.6
Addiere das Ergebnis der Multiplikation und die Zahl aus dem Dividenden und notiere das Ergebnis in der nächsten Position der Ergebniszeile.
  
Schritt 7.7
Multipliziere den neuesten Eintrag im Ergebnis mit dem Divisor und schreibe das Ergebnis von unter den nächsten Term im Dividenden .
  
Schritt 7.8
Addiere das Ergebnis der Multiplikation und die Zahl aus dem Dividenden und notiere das Ergebnis in der nächsten Position der Ergebniszeile.
  
Schritt 7.9
Multipliziere den neuesten Eintrag im Ergebnis mit dem Divisor und schreibe das Ergebnis von unter den nächsten Term im Dividenden .
  
Schritt 7.10
Addiere das Ergebnis der Multiplikation und die Zahl aus dem Dividenden und notiere das Ergebnis in der nächsten Position der Ergebniszeile.
  
Schritt 7.11
Multipliziere den neuesten Eintrag im Ergebnis mit dem Divisor und schreibe das Ergebnis von unter den nächsten Term im Dividenden .
  
Schritt 7.12
Addiere das Ergebnis der Multiplikation und die Zahl aus dem Dividenden und notiere das Ergebnis in der nächsten Position der Ergebniszeile.
  
Schritt 7.13
Multipliziere den neuesten Eintrag im Ergebnis mit dem Divisor und schreibe das Ergebnis von unter den nächsten Term im Dividenden .
  
Schritt 7.14
Addiere das Ergebnis der Multiplikation und die Zahl aus dem Dividenden und notiere das Ergebnis in der nächsten Position der Ergebniszeile.
  
Schritt 7.15
Multipliziere den neuesten Eintrag im Ergebnis mit dem Divisor und schreibe das Ergebnis von unter den nächsten Term im Dividenden .
  
Schritt 7.16
Addiere das Ergebnis der Multiplikation und die Zahl aus dem Dividenden und notiere das Ergebnis in der nächsten Position der Ergebniszeile.
  
Schritt 7.17
Multipliziere den neuesten Eintrag im Ergebnis mit dem Divisor und schreibe das Ergebnis von unter den nächsten Term im Dividenden .
  
Schritt 7.18
Addiere das Ergebnis der Multiplikation und die Zahl aus dem Dividenden und notiere das Ergebnis in der nächsten Position der Ergebniszeile.
  
Schritt 7.19
Multipliziere den neuesten Eintrag im Ergebnis mit dem Divisor und schreibe das Ergebnis von unter den nächsten Term im Dividenden .
  
Schritt 7.20
Addiere das Ergebnis der Multiplikation und die Zahl aus dem Dividenden und notiere das Ergebnis in der nächsten Position der Ergebniszeile.
  
Schritt 7.21
Multipliziere den neuesten Eintrag im Ergebnis mit dem Divisor und schreibe das Ergebnis von unter den nächsten Term im Dividenden .
 
Schritt 7.22
Addiere das Ergebnis der Multiplikation und die Zahl aus dem Dividenden und notiere das Ergebnis in der nächsten Position der Ergebniszeile.
 
Schritt 7.23
Alle Zahlen außer der letzten werden Koeffizienten des Quotients der Polynome. Der letzte Wert in der Ergebniszeile ist der Rest.
Schritt 7.24
Vereinfache das Quotientenpolynom.
Schritt 8
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Faktorisiere aus heraus.
Schritt 8.2
Faktorisiere aus heraus.
Schritt 8.3
Faktorisiere aus heraus.
Schritt 8.4
Faktorisiere aus heraus.
Schritt 8.5
Faktorisiere aus heraus.
Schritt 9
Faktorisiere.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Faktorisiere unter der Verwendung der AC-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 9.1.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 9.2
Entferne unnötige Klammern.
Schritt 10
Addiere und .
Schritt 11
Faktorisiere die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1.1
Faktorisiere aus heraus.
Schritt 11.1.2
Faktorisiere aus heraus.
Schritt 11.1.3
Faktorisiere aus heraus.
Schritt 11.1.4
Faktorisiere aus heraus.
Schritt 11.1.5
Faktorisiere aus heraus.
Schritt 11.2
Faktorisiere.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.1
Faktorisiere unter der Verwendung der AC-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.2.1.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 11.2.1.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 11.2.2
Entferne unnötige Klammern.
Schritt 12
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 13
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.1
Setze gleich .
Schritt 13.2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Schritt 13.2.2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 13.2.2.1
Schreibe als um.
Schritt 13.2.2.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 13.2.2.3
Plus oder Minus ist .
Schritt 14
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 14.1
Setze gleich .
Schritt 14.2
Addiere zu beiden Seiten der Gleichung.
Schritt 15
Setze gleich und löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.1
Setze gleich .
Schritt 15.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 16
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 17